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A short note on the general boundary element method for
viscous �ows with high Reynolds number
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SUMMARY

In this paper, the general boundary element method and the parallel computation are employed to
solve laminar viscous �ows in a driven square cavity, governed by the exact Navier–Stokes equations.
Using the solution at Re=0 as the initial approximation, the convergent numerical results for high
Reynolds number at Re=7500 are obtained, for the �rst time, by the boundary element method. This
veri�es the validity and great potential of the general boundary element method for highly non-linear
problems, which may greatly enlarge application regions of the boundary element method in science
and engineering. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that the boundary element method (BEM) often fails to give convergent
numerical results of highly non-linear problems. For example, although the problem of the
viscous �ow in a driven square cavity at high Reynolds number has been solved by iterative
numerical techniques [1] of the �nite di�erence method (FDM), the �nite volume method
(FVM) and so on, to the best of our knowledge, no one has successfully employed the BEM
to give convergent results at the high Reynolds number Re=7500 (see References [2, 3]).
This is mainly because the BEM is based on the superposition of fundamental solutions of
linear operators so that it is in principle suitable for linear problems and weakly non-linear
problems.
The so-called general boundary element method (GBEM) was proposed by Liao and his

co-authors [4–9] to overcome the limitations of the traditional BEM. The GBEM is valid
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even if a non-linear equation does not contain any linear terms at all. Thus, the GBEM is
more general and is valid for highly non-linear problems. The GBEM is based on an analytic
technique for non-linear problems, namely the homotopy analysis method [10–14]. Thus, it has
a solid mathematical base. Di�erent from well-known perturbation techniques, the homotopy
analysis method is valid even if a non-linear problem does not contain any small parameters
at all. Especially, unlike all other analytic techniques for non-linear problems, the homotopy
analysis method provides us with a simple way to control the convergence of approximation
series and adjust convergence region and rate, as mentioned by Liao [14]. This is the main
reason why the GBEM is valid for strong non-linear problems.
It is well known that domain integrals appear when the BEM is employed to solve a non-

linear problem, which considerably increase the CPU time. In this paper, we propose a parallel
general boundary element method by using parallel computations. To show its validity, our
approach is applied to the viscous �ow in a driven square cavity, and the convergent numerical
results are obtained even at high Reynolds number Re=7500.

2. MATHEMATICAL FORMULATION

Consider laminar viscous �ow in a driven cavity, governed by the dimensionless Navier–
Stokes equations written in the vorticity ! and streamfunction  as follows:
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where Re is the Reynolds number. To the best of our knowledge, no one has successfully
applied the boundary element methods to get convergent results of above equations at high
Reynolds number Re=7500 (see References [2, 3]).
In 1992 Liao [4] applied the boundary element method to solve the above-mentioned equa-

tions and obtained convergent results up to Re=2000 by means of a non-uniform grid 40× 40
and the following mth-order iterative formulas:
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where p∈ [0; 1] is a parameter to be chosen, the superscript i denotes the number of iteration,
!i

k(x; y) and  i
k(x; y) are governed by
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and

�k =
{
0 when k61
1 when k¿1 (12)

Note that Equations (7) and (8) with boundary conditions (9) and (10) can be easily solved
by the traditional BEM. Liao [4] found that, when m=1 in iterative formulas (5) and (6),
corresponding to a traditional BEM approach, one cannot get convergent results for Re¿400,
no matter how small the value of p is. However, when m=2, convergent results can be
obtained by means of 40× 40 grid at Reynolds number up to Re=2000, provided p is
properly chosen. For details, please refer to Liao [4].

3. PARALLEL COMPUTING

It is well known that the BEM is e�cient for linear di�erential equations. However, for a non-
linear problem, much more CPU time is needed because the domain integral appears. Recently,
parallel computing [15–19] becomes popular for the BEM. Note that it is very e�cient and
nearly straightforward to apply parallel computations to calculate integrals, mainly because
any an integral is in principle parallel and can be divided into many independent integrals on
independent sub-domains, i.e.∫ ∫

S
f ds=

∫ ∫
S1
f ds+

∫ ∫
S2
f ds+ · · ·+

∫ ∫
SN

f ds

where

S= S1 ∪ S2 ∪ · · · ∪ SN ; S1 ∩ S2 ∩ · · · ∩ SN =0

So, it is natural to employ parallel implementations for the GBEM. Here, we focus on par-
allel computation of the domain integral. Rather than the above-mentioned strategy, the data
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Figure 1. Relative CPU time required for di�erent number of processors on a
distributed-memory multicomputer. (mesh: 96× 96).

decomposition parallelization strategy [20] is employed, which yields an algorithm with very
good load-balancing properties and high e�ciency.
The proposed GBEM approach is parallelized by message passing interface (MPI) [21], a

widely used standard for writing message passing programs. The choice of message passing
library was determined by the requirement that the resulting code is portable to di�erent
parallel computing platforms. There are two kinds of parallel computing systems: shared
memory and distributed memory ones. The higher e�ciency of parallel computation can be
obtained by shared memory computing systems, while distributed one is more adaptive.

3.1. Implementation on a distributed memory system

First of all we employ a system of some personal computers (PC) connected by Local Area
Net (LAN). Each PC has a processor of Intel Pentium 866 with 128 M memory and is
connected by a 10M hub, while one of them is chosen as the host. In this way we construct
an easy-to-use, low-cost computer system available for the parallel computation with data
communication between them, called the cluster computing system [22, 23]. Communications
by TCP=IP are carried out by the message passing library of MPI.
It is found that high parallel e�ciency is obtained even by this low-cost cluster computing

system. If the number of processors is not large, the CPU time required is almost inversely
proportional to the number of processor, as shown in Figure 1. This is mainly because more
than 95% CPU time of our GBEM approach is spent for the integrals. As the number of
processors becomes large, the parallel performance decreases, mainly because the time for
communications between each PC through LAN increases. The parallel performance has been
investigated with two numerical grids, 64× 64 and 96× 96. It is found that for a given
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Figure 2. Parallel speed-up for di�erent computational grids and number of processors
on a distributed-memory multicomputer.

number of processors, the �ner the grid, the more e�cient the parallel computation, as shown
in Figure 2.

3.2. Implementation on a shared memory system

To test the performance of our parallel GBEM approach on a high-performance parallel com-
puter, we implement our code on SGI Onyx 3800, a supercomputer involving 64 processors
at frequency of 500 MHz with 32 GB shared memory. MPI is supported by this machine so
that our code can be employed without any changes.
Obviously, the shared memory makes the communications between di�erent processors

much faster. Thus, less time for message passing is needed and the e�ciency is much higher,
as shown in Figure 3. Therefore, the parallel performance of a parallel supercomputer with
shared memory is higher than that of the cluster computing system with distributed memory.
However, the cost of the latter is much lower than that of the former.
All of our calculations indicate that the parallel computation based on the data decompo-

sition parallelization strategy [20] is indeed rather e�cient for the general boundary element
method, even by means of a low-cost cluster computing system.

4. NUMERICAL RESULTS

We use a non-uniform rectangle mesh as numerical grid. Since there is discontinuity in the
velocity �eld at corners, a so-called ‘double-node approach’ technique is applied to treat the
singularity at corners where there are two nodes rather close to each other but belonging to
two di�erent sides. We use linear elements and regular integral on the boundary. The domain
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Figure 3. Parallel speed-up for di�erent computational grids and number
of processors on SGI Onyx 3800.

Table I. The value of the parameter p.

Re 1000 3200 5000 7500

p 0.05 0.01 0.005 0.002

integrals are calculated by four-point Gauss numerical integral method. For details please refer
to Liao [4].
The solution at Re=0 can be obtained without iteration and therefore is used as our initial

approximation. All of our numerical solutions for Reynolds number up to Re=7500 are
obtained starting from this initial. To ensure the convergence, we follow Liao [4] to use the
second-order iterative formulas, namely m=2 in (5) and (6). Note that we have freedom
to choose the value of p ∈ [0; 1], which provides us with a simply way to control the
convergence of the iteration. It is found that the value of p had to be decreased as the Reynolds
number increases, as shown in Table I. Besides, as the non-linearity becomes stronger, the
number of iteration increases, as shown in Figure 4. It is found that, even at high Reynolds
number, there always exists a small enough p, by means of which we can gain the correct,
convergent results from the initial approximation obtained at Re=0. But, it is unknown right
now how to �nd the best value of p to ensure the best convergence rate. When m=1 in
the iterative formulas (5) and (6), corresponding to the traditional BEM, we also fail to get
convergent results for Re¿400, as reported by Liao [4]. Like Liao [4], we cannot obtain
convergent results at Re=7500 by means of the grid 40× 40, mainly because a �ne enough
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Figure 4. Root-mean-square errors via iterative number (mesh: 64× 64).

Table II. Comparison of the results about primary vortex with those given by Ghia et al. [24].

Current results Results given by Ghia et al.
Re  max !v; c xv; c yv; c  max !v; c xv; c yv; c

1000 −0:1177 2.0640 0.5333 0.5667 −0:1179 2.0497 0.5313 0.5625
3200 −0:1197 1.9376 0.5177 0.5417 −0:1204 1.9886 0.5165 0.5469
5000 −0:1193 1.9048 0.5177 0.5333 −0:1190 1.8602 0.5117 0.5352
7500 −0:1184 1.8773 0.5083 0.5333 −0:1200 1.8799 0.5117 0.5322

grid had to be used to simulate the complicated �ows at high Reynolds number in a driven
square cavity.
The numerical results are presented for four di�erent Reynolds numbers: 1000, 3200, 5000

and 7500. The root-mean-square errors via the iterative number are shown in Figure 4. The
comparisons of our numerical results given by grid mesh 120× 120 with respect to those
reported by Ghia et al. [24] are shown in Table II. The velocity pro�les of u at x= 1

2 and
v at y= 1

2 , compared with the results given by Ghia et al. [24], are shown in Figure 5 and
6, respectively. The contours of the stream-function are shown in Figures 7. All of our
numerical results agree well with the solutions provided by Ghia et al. [24] by mean of the
�nite di�erence method.
It should be emphasized that, to the best of our knowledge, no one has gained convergent

results for the viscous �ow in a driven square cavity at Re=7500 by the boundary element
method. This veri�es that the general boundary element method is indeed valid for highly
non-linear problems and therefore might greatly enlarge application regions of the boundary
element method in science and engineering.
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Re = 7500
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Figure 5. Pro�les of velocity u at x= 1
2 for Re=1000; 3200; 5000; 7500. Solid line: current result;

circle: results given by Ghia et al. [24].

5. CONCLUSION

In this paper, the general boundary element method and the parallel computation are employed
to solve laminar viscous �ows in a driven square cavity, governed by the exact Navier–Stokes
equations. Using the solution at Re=0 as the initial approximation, the convergent numerical
results for high Reynolds number at Re=7500 are obtained, for the �rst time, by the boundary
element method. This veri�es the validity and great potential of the general boundary element
method for highly non-linear problems, which may greatly enlarge application regions of the
boundary element method in science and engineering.
When the boundary element method is employed to non-linear problems, most of CPU

time is spent to calculate integrals. Thus, it is certainly very e�cient and straightforward to
apply the parallel computation to the BEM. On the one side it is easy to make a cluster
computing system with low-cost, and on the other side the appearance of MPI makes parallel
computation convenient and popular. So, combining the general boundary element method
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Figure 6. Pro�les of velocity v at y= 1
2 for Re=1000; 3200; 5000; 7500. Solid line: current result;

circle: results given by Ghia et al. [24].

[4–10] with the above-mentioned techniques for parallel computations, the boundary element
method can be more e�ciently applied to solve a lot of highly non-linear problems in science
and engineering.
Note that only the high-order iterative formulas (m¿2) can ensure the convergence of

iterations at high Reynolds number Re=7500, provided the value of the parameter p is
properly chosen. Although we can always �nd a small enough value of p to ensure the
convergence of iteration at high Reynolds number, it is still an open question how to give
the best value of p to gain the best convergence rate a prior. Besides, many iterations are
needed for the high Reynolds number Re=7500. So, it is worthwhile further increasing the
e�ciency of the GBEM so that it can be employed to more complicated, three-dimensional
non-linear problems.
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